当前,我国工业生产的特点是产品品种多、更新快和市场竞争激烈。在这种情况下,用户对模具制造要求是“交贷期短”、“精度高”、“质量好”、“价格低”。模具技术的发展应该与这些要求相适应。
(l)在模具设计制造中将全面推广CAD/CAM/CAE技术模具CAD/CAM/CAE技术,是模具技术发展的一个重要里程碑。实践证明,模具CAD/CAM/CAE技术是模具设计制造的发展方向。现在,全面普及CAD/CAM/CAE技术的条件已基本成熟。随着微机软件的发展和进步,技术培训工作也日趋简化。在普及推广模具CAD/ CAM技术的过程中,应抓住机遇,重点扶持国产模具软件的开发和应用;加大技术培训和技术服务的力度;进一步扩大CAE技术的应用范围。有条件的企业应积极做好模具CAD/CAM技术的深化应用工作,即开展企业信息化工程,可从CAPP→PDM→CIMS→VR,逐步深化和提高。用于模具设计制造的计算机软件,将向智能化、集成化方向发展。
(2)快速原型制造(RPM)及相关技术将得到更好的发展
快速原型制造(RPM)技术是美国首先推出的。它是伴随着计算机技术、激光成形技术和新材料技术的发展而产生的,是一种全新的制造技术,是基于新颖的离散/堆积(即材料累加)成形思想,根据零件CAD模型,快速自动完成复杂的三维实体(模型)制造。RPM技术是集精 密机械制造、计算机、NC技术、激光成形技术和材料科学最新发展的高科技技术,被公认为是继NC技术之后的一次技术革命。
RPM技术可直接或间接用于模具制造。首先是通过立体光固化(SLA)、叠层实体制 (LOM)、激光选区烧结(SLS)、三维打印(3D-P)、熔融沉积成形(FDM)等不同方法得到制件原型。然后通过一些传统的快速制模方法,获得长寿命的金属模具或非金属的低寿命模具。主要有精密铸造、粉末冶金、电铸和熔射(热喷涂)等方法。这种方法制摸,具有技术先进、成本较低、设计制造周期短、精度适中等特点,从模具的概念设计到制造完成,仅为传统加工方法所需时间的1/3和成本的1/4左右。因此,快速制模技术与快速原型制造技术的结合,将是传统快速制模技术进一步深入发展的方向。用RPM技术制造出原型后,或用实物,使用旋转铸造(用热硬化橡胶做模具)可快速、低成本地制造小批量零件,发展前景很好。
RPM技术还可以解决石墨电极压力振动(研磨)成形法中母模(电极研具)制造困难问题,使该法获得新生。青岛海尔模具有限公司还构建了基于RE(逆向工程技术)/RPM的模具并行开发系统,具有开发质量高、开发成本低及开发周期短等优点。
(3)高速铣削加工将得到更广泛的应用
国外近年来发展的高速铣削加工,主轴转速可达40000—100000r/min,快速进给速度可达到30—40m/min,加速度可达1g,换刀时间可提高到1—2s。这样就犬幅度提高了加工效率, 并可获得Ra≤1μm的加工表面粗糙度。另外,还可加工硬度达60HRC的模块,形成了对电火花成形加工的挑战。高速切削加工与传统切削加工相比还具有温升低(加工工件只升高3℃)、 热变形小等优点。目前它已向更高的敏捷化、智能化、集成化方向发展。高速铣削必须与相应的软件、加工工艺、刀具及其夹紧头相配合。高速铣削加工技术的发展,促进了模具加工技术的发展,特别是对汽车、家电行业中大型型腔模具制造注入了新的活力。
(4)模具高速扫描及数字化系统将在逆向工程中发挥更大作用
高速扫描机和模具扫描系统,已在我国200多家模具厂点得到应用,取得良好效果。该系统提供了从模型或实物扫描到加工出期望的模型所需的诸多功能,大大缩短了模具的研制制造周期。有些快速扫描系统,可快速安装在已有的数控镜床及加工中心上,用雷尼绍的SP2—1扫描测头实现快速数据采集,采集的数据通过软件可自动生成各种不同数控系统的加工程序及不同格式的CAD数据,用于模具制造业的“逆向工程"。高速扫描机扫描速度最高可达3m/ min,大大缩短了模具制造周期。
由于模具扫描系统已在汽车、摩托车、家电等行业得到成功应用,相信在“十五”期间将发挥更大的作用。逆向工程和并行工程将在今后的模具生产中发挥越来越重要的作用。
(5)电火花铣削加工技术将得到发展
电火花铣削加工技术也称为电火花创成加工技术,这是一种替代传统的用成型电极加工型腔的新技术,它是用高速旋转的简单的管状电极作三维或二维轮廓加工(像数控镜一样),因此不再需要制造复杂的成型电极,这显然是电火花成形加工领域的重大发展。国外已有使用这种技术的机床在模具加工中应用。预计这一技术将得到发展。
(6)超精加工和复合加工将得到发展
航空航天等部门已应用纳米技术,必须要有超高精度的模具制造超高精度的零件。随着模具向精密化和大型化方向发展,加工精度超过1μm的超精加工技术和集电、化学、超声波、激光等技