切削用量的选择是制定机械零件加工工艺中的一个重要方面,选择得恰当与否,将直接影响到成品的质量、生产率、加工成本等,然而由于影响切削用量的因素繁多,影响因素之间又相互交叉,相互制约,因而确定最佳切削用量较为困难。人们最初是根据经验来确定金属切削用量的,然而这种方法所确定的切削用量因人因厂而异,实际效益相差很大,而且由于各种新加工材料的不断涌现,以及数控加工机床、加工中心和柔性制造系统的应用,依靠经验来确定切削参数已远不能适应时代的发展。
随着人们对金属切削机理研究的不断深入,以及计算机技术的发展,人们建立起计算机辅助优化切削数据的程序系统,为选择最优切削参数提供了新的方法和手段。然而由于影响最佳切削参数的因素错综复杂,优化方法本身也存在优化效率和收敛于局部最优点的问题,因而最佳切削参数的确定受到一定的限制,在实际操作中要针对具体的问题建立相应的优化数学模型,步骤十分繁琐。目前利用计算机技术做成了各种切削数据库,为生产提供数据,这些数据比较准确、可靠,是人们长期经验的总结,但它们在应用时很大程度上受到所搜集的数据量和其包含的范围的影响。另一方面,从切削数据库检索的切削用量数据在应用中还要根据实际工作环境进行一定的调整,其本身也不具有推广应用能力。因此,目前这些切削用量确定方法求解的快速性和准确性受到一定的限制,对于实时的控制切削用量、实现机器的智能化选取切削参数有较大困难。作为人工智能研究领域的新技术——人工神经网络,具有非线性特性和信息分布性,在处理多输入和多输出系统时省去了传统建模方法所需的复杂的各变量相关性分析;神经网络具有大量信息的并行处理功能。因此神经网络非常适于用来代替人类基于经验的决策行为。
1 神经网络的非线性建模原理
对神经网络的理论研究表明,具有单隐层的前馈式分层神经网络可以以任意精度逼近任何非线性连续函数。因此,本文采用了前馈分层结构的BP网络实现非线性建模。
它是一个三层网络,n个输入单元对应输入模式的n个特征参数,m个输出单元对应系统输出,单隐层含有r个节点,在训练过程中网络采用多层误差修正梯度下降算法进行学习,通过使一个代价函数最小化过程完成输入到输出的映射。代价函数通常以系统误差表示。
(1)
式中 Yk——网络输出层第k个节点的输出
Ytk——理想输出
输入信息正向传播,得到网络输出
(2)
(3)
式中 xj——送给输入层节点j的输入
bi(h)——隐层第i节的阈值(i=1,2,…,r)
bk0——输出层k节点的阈值(k=1,2,…,m)
wij(h)——隐层节点i与输入层节点j的连接权
wki0——输出层节点k与隐层节点i的连接权
Oi(h)——隐层节点i的输出
f(*)——神经元传递函数,f(x)=1/(1+e-x)
实现代价函数最小化,误差反向传递,修正网络权重
(4) 网络通过反复学习,可以使代价函数达到要求的误差限度。至此,网络的非线性建模即告结束。
从总体性质看,此神经网络是一个由Rn→Rm空间的映射,而且是复杂的非线性映射,它能将Rn空间的一个子集连续地映射到Rm空间中去。对于n个输出,整个网络相当于一个隐式函数
(4)
Y=F(X) (5)
2 切削用量选择的神经网络建模
运用神经网络智能化选择切削用量的基本思想是:金属切削加工中用量的选择受到多种因素的影响,其变化与组合众多,运用神经网络非线性映射能力,恰当选取影响切削用量选择的特征因素,建立切削用量和各影响因素之间的神经网络映射模型,运用机床过去运行数据进行学习,自动寻找规律并分布贮存于权值中,运行时对输入切削条件参数通过前向计算求解出最佳切削用量。
理想切削用量选择神经网络模型
排除人为及环境因素,影响切削用量选定的因素包括:加工方法、工件、刀具、切削液、机床及生产目标,因此建立理想网络模型。若可利用此理想网络模型实现非常广阔范围内的切削用量选择,那么在最佳切削用量的选取工作中完全可用此模型来代替工程师的工作。然而这种理想模型的实现是很困难的:其一,由于要搜集到理想模型所要求的如此完备和广泛的切削样本数据是不容易办到的,因此在训练过程中,会由于数据的缺乏,或奇异数据的存在,使网络找不到收敛点,且随着网络的增大,这种缺点将更加突出;其二,由于模型内要容纳的规律范围宽广,内容广泛,使网络更加容易陷于局部最小。由以上分析可知,对于理想的切削用量选择神经网络模型是不容易实现的,但我们可通过对理想模型针对某一问题具体化,使其变得有效可用。
车加工切削用量选择的神经网络模型
由于粗加工和精加工的目标和性质不同,因此影响切削用量选